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INTRODUCTION 

IN THE combined free and forced laminar convection in 
horizontal ducts, the buoyancy force induces secondary flow, 
which enhances heat transfer between the wall and the fluid. 
There have been numerous analytical studies for various 
cross-sectional geometries for the uniform heat-flux or tem- 
perature boundary condition [ 1,2]. Recently, Nandakumar 
et al. [3] examined the cases of circular and square ducts 
with the boundary conditions of axially uniform heat flux 
and circumferentially uniform temperature. They found the 
existence of a dual solution as the Dean problem in the 
isothermal curved tubes [4,5], i.e. both two- and four-vortex 
crossflow patterns are possible in the certain region of 
Grashof number. 

The studies for the circumferentially non-uniform bound- 
ary condition, on the other hand, are relatively few. Patankar 
et al. [6] treated the mixed convection flow in a circular tube 
for the axially uniform flux condition with the peripheral 
boundary condition of the top half insulated while the 
bottom half heated at a specified rate. They observed a 
change in the flow behavior from a two-vortex pattern to a 
four-vortex one as the Grashof number increases. However, 
they did not report a dual solution. Recently Law et al. [7] 
reexamined the problem to see whether the multiple solution 
is possible. They studied the mixed convection flow in square, 
circular and semicircular ducts with the thermal boundary 
conditions similar to those in Patankar et al. Although they 
found dual solutions in the square and semicircular ducts, 
they could obtain only the two-vortex solution for the cir- 
cular duct for the entire Grashof-number region they studied 
(2/a Gr < 10’ N lO6). This finding is in contradiction to that 
of Patankar et al., whose solution exhibits a four-vortex 
pattern above a certain critical Grashof number. The dis- 

insulated 

crepancy of these two results has motivated us to undertake 
the present investigation. The purpose of this study is to 
clarify the matter and, if possible, to identify the regions of 
multiple solution for the range of Prandtl numbers. 

SQLUTION PROCEDURE 

For a fully developed mixed convection flow in a heated 
horizontal circular tube, invoking the Boussinesq approxi- 
mation, the dimensionless governing equations ofcontinuity, 
momentum and energy are written in the cylindrical coor- 
dinates (r, 0, z) shown in Fig. 1. 

+V’V+sg-;-GrBsinR (3) 

where the dimensionless variables are defined as 

FIG. 1. Coordinate system. 
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NOMENCLATURE 

tube diameter 
friction factor, equation (10) 
gravitational acceleration 

Gr Grashof number, equation (6) 
k thermal conductivity 
NU average Nusselt number, equation (10) 
P dimensionless pressure, equation (6) 
P pressure 
P* reduced pressure, equation (7) 
Pr Prandtl number, equation (6) 
Q' heat transfer rate per unit length 
4 heat transfer rate per unit area 
R tube radius 
r radial coordinate 
Re Reynolds number, tiD/v 
T temperature 
U, V, W dimensionless velocities, equation (6) 

U, u, MJ velocity components in r, 0, z 

Greek symbols 

; 
thermal diffusivity 
thermal expansion coefficient 

‘I dimensionless radial coordinate, r/R 
0 azimuthal coordinate 
Y kinematic viscosity 

: 
density 
dimensionless temperature, equation (6) 

ti stream function. 

Subscripts 
0 forced convection value 
b bulk property 
w wall value. 

u=“_ directions and the overbar denotes the average value. Since 
V/R’ ‘= $i’ w = (-dp,d;(R’,pv)’ the flow is symmetric, it suffices to consider only half the 

tube cross section (0 < 0 < n). The boundary conditions 

rl=f, 
T- T, * 

@ = e’ik’ ’ = p(v;R)‘I 
may then be expressed as 

n = 1 : U = V = W = 0 (no-slip) 
Gr = Q’gfiR’/kv*, Pr = v/a (6) aa, 

and q= l.OCO$;: %=O (adiabatic) 

p* =pfpbgrcosO. (7) 

Here, (u, L’. IV) are the velocity components in the (r, 0, z) 
(uniform heat flux) 

Axial Velocity Temperature Stream Function 

FIG. 2. Contours of axial velocity, temperature, and stream function for Pr = 5, 2/n Gr = 106. 
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FIG. 3. Friction factor and Nusselt number variation with 
Grashof number. 

0 = 0, 9 = a: V = 0, g = g: = g = 0 (symmetry). 

(8) 
In addition, the introduction of the bulk temperature 
requires the solution to satisfy the overall energy balance, 
which is 

(9) 

These equations are discretized on a staggered grid : the 
QUICK scheme of Leonard [8] is adopted for the convective 
derivatives to reduce the error due to numerical diffusion, 
whereas the central differencing is used for other derivatives. 
Using the SIMPLER algorithm of Patankar [9], the solution 
is sought iteratively until the following convergence criteria 
are met : 

Z(]Reso]) < 5 x 10m4 (Q:continuity. Cr, V, W,@equations) 

and 

IQ ““-Q”l/lQ”l < IO-’ (Q:fReandNu). 

RESULTS AND DISCUSSION 

The calculations have been performed first for two Prandtl 
numbers, i.e. 0.7 and 5, and 2/n Gr ranging from lo2 to 10s 
for each Prandtl number as done in refs. [4, 51. In order to 
insure that the grid is sufficiently fine, a few different grids 
were tested for Pr = 5 at 2/n Gr = 10’. A 40 x 40 grid, which 
is uniform in the circumferential direction and densely dis- 
tributed near the wall in the radial direction, was found 
adequate and used throughout in the present study. Inci- 
dentally, this particular grid distribution is much finer than 
the ones used in the previous studies [6, 71. 

For the case of Pr = 5, the present results exhibit the 
existence oftwo solutions when 2/n Gr > 5.3 x 103 : thecross- 
flow pattern of either two-vortex or four-vortex type is found 
possible. If the solution is obtained in the direction of increas- 
ing Gr using the flow field of a lower Gr as an initial guess, 
the resulting flow pattern is of two-vortex type whereas the 
four-vortex solution results if the four-vortex solution of a 
higher Gr is used as an initial guess. This means that, for a 
certain range of Gr, either type of flow field is possible as is 

shown clearly in Fig. 2. The phenomenon was not identified 
in the earlier studies : although both types of solution were 
reported by Patankar et al. [6], each occurs in a different Gr 
region, whereas no four-vortex solution could be obtained 
by Law et al. (71. 

The friction coefficient and the averaged Nusselt number 
are plotted in Fig. 3. The increasing values indicate that the 
secondary motion of the flow becomes more active as Gr 
increases ; the figure shows that the results for corresponding 
flow types are in close agreement with the earlier results. 
Here, the friction factorfand the Nusselt number are defined 
as 

f= (-dPldz)D, N,, = qD 
$W2 47-w - TtJ 

(10) 

The region of dual solution begins at 2/n Gr = 5.3 x 10’. This 
critical point remained fixed as we tried different grids and 
thus introduced varying degrees of disturbance in the cal- 
culation. On the other hand, the upper limit of Gr could not 
be placed definitely. With the present 40 x 40 non-uniform 
grid, the two-vortex solution can be maintained throughout 
the region of investigation (2/nGr < lo*). However, when 
the 30 x 30 uniform grid was used earlier in the study, the 
solution changed from two-vortex type to that of four-vortex 
at 2/x Gr z 2 x IO’. This suggests that the 30 x 30 uniform 
grid is not sufficient to locate such a point. Based on the 
present results, the upper limit of 2/n Gr is greater than 10’ 
and can be confirmed only when the solutions of two different 
grids coincide. 

Now we turn the attention to the flow for Pr = 0.7. Here, 
initially, the two-vortex flow pattern persisted for the entire 
Grashof-number range: unlike in the case for Pr = 5. the 
tlow did not change naturally to that of four-vortex type. 
This appeared to be in accordance with the results by Law 
et al. [7], but different from that of Patankar et al. [6] in 
which a spontaneous four-vortex pattern was reported for 
the large Gr region. It is not the whole picture though: a 
four-vortex solution was found later when we tried to locate 
the bifurcation point for other Prandtl-number flows. Using 
the four-vortex solution of Pr = 5 as an initial guess, the 
solution, which is of four-vortex type, for a neighboring Pr 
was obtained. In this manner, the four-vortex solution could 
be maintained for Pr as small as 0.2. Both solutions for 
Pr = 0.7 and 2/nGr = IO6 are depicted in Fig. 4. It is 
observed from the figure that, due to the thicker thermal 
layer, the secondary motion of the flow is much more pro- 
nounced here than in the case for Pr = 5. Figure 3 presents 
the friction coefficient and the average Nusselt number. Here 
again, the results are seen to be in good agreement with the 
previous results when the flow patterns are matched. 

Finally the Pr-Gr relation that demarcates the two solu- 
tion regions is given in Fig. 5: as Pr increases, critical Gr 
decreases rather sharply initially and more moderately later 
on. It also shows that the dual solution exists throughout the 
Pr range that has been examined (0.2 < Pr < 10). 

The present paper has illuminated the duality of the solu- 
tion in the fully developed region. How the flow reaches to 
those two different final states is largely in question. To shed 
some light on the subject, the entrance region of the tube is 
currently examined by the authors. 

SUMMARY 

The fully developed mixed convection flow in a circular 
pipe, the top half of which is insulated and the bottom half 
is maintained at the constant heat-flux condition, has been 
numerically investigated. The dual solution, which was not 
identified in the earlier studies, has been observed for the 
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Axial Velocity Temperature Stream Function 

FIG. 4. Contours of axial velocity, temperature, and stream function for Pr = 0.7,2/n Gr = 106. 

range of Prandtl number (0.2 $ Pr C IO). The lower end of 
the dual-solution region, Gr,,i,, has been located. The upper 
limit of Gr, on the other hand, appears to be more susceptible 
to disturbances and is dependent upon the grid being used. 
The dual solution could be maintained up to 2/xGr < IO* 
for Pr = 5, which is the highest Gr examined in the study. 
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FIG. 5. Bifurcation map. 
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